

Particle Spectra of Identified Charged Hadrons from p-p Collisions at RHIC

By Mark Harvey
Brookhaven National Laboratory
American Physical Society Meeting
April 5 – 8, 2003

Physics Motivation

- Identified Charged Hadrons in p-p collisions:
 - Provide basline study for Au-Au and d-Au interactions:
 - Lower multiplicity; hence, cleaner data sampling environment
 - Data useful for detailed study of Cronin effect
- Information about the evolution of the process:
 - Spectra and ratios provide insight into:
 - Particle formation at "freeze-out"; e.g., mechanism of hadronization...
- Fragmentation into hadrons may reflect progression of the collision process

Mark Harvey, BNL APS Meeting April 5-8, 2003

Overview of RHIC

Mark Harvey, BNL APS Meeting April 5-8, 2003

PHENIX Detector

Mark Harvey, BNL APS Meeting April 5-8, 2003

Identified Charged Hadron Analysis Detection Elements:

- **■Beam-Beam Counter (BBC)**
- Trigger, timing, and collision information
- •Drift Chamber (DC)
- Charge particle tracking and momentum information
- •Pad Chambers (PC1 -PC3)
- 3D space-point information on charged particles
- •Time-Of-Flight (TOF)
 Detector
- Timing information and charged hadron identification

Particle Detection and Measurement

- Particle Identification (PID) is facilitated by:
 - High Resolution Time-of-Flight (TOF) detector
 - **TOF** time resolution: 120 ps, relative to 2σ cut in m²; π , K separation up to 2 GeV/c; P/K separation extends up to p_T = 4 GeV/c (**Au-Au**)
 - Beam-Beam Counter (BBC) provides start clock trigger

Mark Harvey, BNL APS Meeting April 5-8, 2003

Mass Squared Distributions

In p-p, clean pion and kaon separation out to |p| ~ 1.6 GeV/c

Mark Harvey, BNL APS Meeting April 5-8, 2003

Pion Au-Au Spectra and Ratios vs. p_T at sqrt(s) = 200 GeV; Plots prepared by Tatsuya Chujo, BNL

Mark Harvey, BNL APS Meeting April 5-8, 2003

Pion spectra, "Characterized by power law shape shape for all centralities"

80 - 91 %

Pion ratios, • "flat p_ dependence" -"no centrality dependence"

Mark Harvey, BNL APS Meeting April 5-8, 2003

Mark Harvey, BNL APS Meeting April 5-8, 2003

Identified Charged Hadron Spectra vs. p_T

at

sqrt(s) = 200GeV in
 p-p collions
 Work in Progress
 (WP)

- Pion spectra, may "depend upon powerlaw characterization"
- **◆**Kaon spectra, possible
 "indication of
 exponential fall off in p_T"
- •Proton spectra, perhaps "exhibits Boltzman-like shape"

Data analysis not fully mature enough to make any substantive statements at this point.

PHENIX

Identified Charge Hadron Spectra vs. $p_{_{\mathrm{T}}}$

at sqrt(s) = 200GeV in p-p collisions

Work in Progress (WP)

- **Proton** respective ratios:
- → Uniformity within uncertainty (statistical only)
- \Rightarrow No momentum dependence Range \sim (0.2 < $p_{_T}$ < 2.0) GeV/c
- **©**Comparison of ratios:
- -Current π ratios appear to be fairly consistent with preliminary Au-Au and p-p results
- → K ratios for p-p data analyses are also comparable
- → Current Pbar/P ratio is inconsistent with preliminary Au-Au and p-p results
- → Systematic study to commence in following weeks

Summary

- •First p-p collision measurement at \sqrt{s} = 200 GeV
- •The p-p analysis of the Identified Charge Hadron data set may serve as a good baseline tool
 - Provide basline study for Au-Au and d-Au interactions
 - Important for study of Cronin effect at this CM energy
- •Corrections to spectra:
 - Trigger efficiency
 - Sytematics
- Particle spectra and ratios analyses are on going